22 research outputs found

    Modeling high-performance wormhole NoCs for critical real-time embedded systems

    Get PDF
    Manycore chips are a promising computing platform to cope with the increasing performance needs of critical real-time embedded systems (CRTES). However, manycores adoption by CRTES industry requires understanding task's timing behavior when their requests use manycore's network-on-chip (NoC) to access hardware shared resources. This paper analyzes the contention in wormhole-based NoC (wNoC) designs - widely implemented in the high-performance domain - for which we introduce a new metric: worst-contention delay (WCD) that captures wNoC impact on worst-case execution time (WCET) in a tighter manner than the existing metric, worst-case traversal time (WCTT). Moreover, we provide an analytical model of the WCD that requests can suffer in a wNoC and we validate it against wNoC designs resembling those in the Tilera-Gx36 and the Intel-SCC 48-core processors. Building on top of our WCD analytical model, we analyze the impact on WCD that different design parameters such as the number of virtual channels, and we make a set of recommendations on what wNoC setups to use in the context of CRTES.Peer ReviewedPostprint (author's final draft

    Improving performance guarantees in wormhole mesh NoC designs

    Get PDF
    Wormhole-based mesh Networks-on-Chip (wNoC) are deployed in high-performance many-core processors due to their physical scalability and low-cost. Delivering tight and time composable Worst-Case Execution Time (WCET) estimates for applications as needed in safety-critical real-time embedded systems is challenged by wNoCs due to their distributed nature. We propose a bandwidth control mechanism for wNoCs that enables the computation of tight time-composable WCET estimates with low average performance degradation and high scalability. Our evaluation with the EEMBC automotive suite and an industrial real-time parallel avionics application confirms so.The research leading to these results is funded by the European Union Seventh Framework Programme under grant agreement no. 287519 (parMERASA) and by the Ministry of Science and Technology of Spain under contract TIN2012-34557. Milos Panic is funded by the Spanish Ministry of Education under the FPU grant FPU12/05966. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella is partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Acute coronary syndrome in diclofenac sodium-induced type I hypersensitivity reaction : Kounis syndrome

    Get PDF
    Drug-induced type I hypersensitivity reactions are frequent. Sometimes, acute coronary syndrome (ACS) can be registered in such patients, which may have a serious impact on the course and management of the allergic reaction. Because of potentially atypical ACS clinical presentations, the ECG is an obligatory diagnostic tool in any allergic reaction. Coronary artery spasm is the pathophysiological basis of ACS, triggered by the action of potent vasoactive mediators (histamine, neutral proteases, arachidonic acid products) released from the cells involved in type I hypersensitivity. Allergic angina and allergic myocardial infarction are referred to as Kounis Syndrome. We describe herein a case of ACS in a patient with registered systemic immediate hypersensitivity reaction which developed following the muscular administration of diclofenac sodium.peer-reviewe

    Adapting TDMA arbitration for measurement-based probabilistic timing analysis

    Get PDF
    Critical Real-Time Embedded Systems require functional and timing validation to prove that they will perform their functionalities correctly and in time. For timing validation, a bound to the Worst-Case Execution Time (WCET) for each task is derived and passed as an input to the scheduling algorithm to ensure that tasks execute timely. Bounds to WCET can be derived with deterministic timing analysis (DTA) and probabilistic timing analysis (PTA), each of which relies upon certain predictability properties coming from the hardware/software platform beneath. In particular, specific hardware designs are needed for both DTA and PTA, which challenges their adoption by hardware vendors. This paper makes a step towards reconciling the hardware needs of DTA and PTA timing analyses to increase the likelihood of those hardware designs to be adopted by hardware vendors. In particular, we show how Time Division Multiple Access (TDMA), which has been regarded as one of the main DTA-compliant arbitration policies, can be used in the context of PTA and, in particular, of the industrially-friendly Measurement-Based PTA (MBPTA). We show how the execution time measurements taken as input for MBPTA need to be padded to obtain reliable and tight WCET estimates on top of TDMA-arbitrated hardware resources with no further hardware support. Our results show that TDMA delivers tighter WCET estimates than MBPTA-friendly arbitration policies, whereas MBPTA-friendly policies provide higher average performance. Thus, the best policy to choose depends on the particular needs of the end user.The research leading to these results has been funded by the EU FP7 under grant agreement no. 611085 (PROXIMA) and 287519 (parMERASA). This work has also been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Miloˇs Pani´c is funded by the Spanish Ministry of Education under the FPU grant FPU12/05966. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    On the Transmission of Colour Image Over Double Generalized Gamma FSO Channel

    Get PDF
    In this paper performance analysis of colour image Free Space Optics (FSO) transmission over Double Generalized Gamma (DGG) turbulence communication channel is carried out. At the reception side, we have used an average bit error rate (ABER) for reconstructed image performance measure, as the function of FSO link transmission parameters, such as propagation distance, Rytov variance and turbulence shaping and severity parameters (γ1, γ2, m1, m2). Obtained results cover a large number of colour image FSO transmission scenarios, for Gamma-Gamma, Double-Weibull and K turbulence models channels considered as special cases

    parMERASA Multi-Core Execution of Parallelised Hard Real-Time Applications Supporting Analysability

    Get PDF
    International audienceEngineers who design hard real-time embedded systems express a need for several times the performance available today while keeping safety as major criterion. A breakthrough in performance is expected by parallelizing hard real-time applications and running them on an embedded multi-core processor, which enables combining the requirements for high-performance with timing-predictable execution. parMERASA will provide a timing analyzable system of parallel hard real-time applications running on a scalable multicore processor. parMERASA goes one step beyond mixed criticality demands: It targets future complex control algorithms by parallelizing hard real-time programs to run on predictable multi-/many-core processors. We aim to achieve a breakthrough in techniques for parallelization of industrial hard real-time programs, provide hard real-time support in system software, WCET analysis and verification tools for multi-cores, and techniques for predictable multi-core designs with up to 64 cores

    Improving performance guarantees in wormhole mesh NoC designs

    No full text
    Wormhole-based mesh Networks-on-Chip (wNoC) are deployed in high-performance many-core processors due to their physical scalability and low-cost. Delivering tight and time composable Worst-Case Execution Time (WCET) estimates for applications as needed in safety-critical real-time embedded systems is challenged by wNoCs due to their distributed nature. We propose a bandwidth control mechanism for wNoCs that enables the computation of tight time-composable WCET estimates with low average performance degradation and high scalability. Our evaluation with the EEMBC automotive suite and an industrial real-time parallel avionics application confirms so.The research leading to these results is funded by the European Union Seventh Framework Programme under grant agreement no. 287519 (parMERASA) and by the Ministry of Science and Technology of Spain under contract TIN2012-34557. Milos Panic is funded by the Spanish Ministry of Education under the FPU grant FPU12/05966. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella is partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer Reviewe

    Modeling high-performance wormhole NoCs for critical real-time embedded systems

    No full text
    Manycore chips are a promising computing platform to cope with the increasing performance needs of critical real-time embedded systems (CRTES). However, manycores adoption by CRTES industry requires understanding task's timing behavior when their requests use manycore's network-on-chip (NoC) to access hardware shared resources. This paper analyzes the contention in wormhole-based NoC (wNoC) designs - widely implemented in the high-performance domain - for which we introduce a new metric: worst-contention delay (WCD) that captures wNoC impact on worst-case execution time (WCET) in a tighter manner than the existing metric, worst-case traversal time (WCTT). Moreover, we provide an analytical model of the WCD that requests can suffer in a wNoC and we validate it against wNoC designs resembling those in the Tilera-Gx36 and the Intel-SCC 48-core processors. Building on top of our WCD analytical model, we analyze the impact on WCD that different design parameters such as the number of virtual channels, and we make a set of recommendations on what wNoC setups to use in the context of CRTES.Peer Reviewe
    corecore